Energy Loss in the Food Chain

What is energy?

Energy is the \qquad that our bodies need to \qquad We need it to
\qquad to pump our blood, to run, to speak, to think, and to do all of the wonderful things that we do. Plants and \qquad need energy too, for the \qquad No energy = no \qquad

How do we measure energy?
Energy can be measured in either \qquad or
\qquad . Calories are more familiar to us; we can read
\qquad to figure out how much energy
is in that delicious chocolate bar. The more \qquad —.
the more \qquad we get from something.

Using \qquad to measure \qquad is actually an old way of doing things; it belongs with the
\qquad that uses feet, inches and pounds to measure things. We have switched to using the
\qquad - and now, instead of measuring in Calories, we measure in \qquad ! How many Joules of energy are in that chocolate bar?

Just like there are \qquad of \qquad in everything we eat, there are also Joules of energy in everything that plants and animals
\qquad or \qquad .

So...where do the Joules come from?

The answer: \qquad ! Joules enter our food web as
\qquad . It's the only way! The plant uses
\qquad to \qquad its own food
(remember - plants are called \qquad). An animal eats the plant, and the \qquad keeps getting passed along the food chain.

So, all of the energy gets passed from the plant to the top of the food web, right?

The system works pretty well, but it's not \qquad . A lot of energy gets \qquad . We lose energy in a
lot of \qquad ways. We can lose it as \qquad if the environment is colder than we are. We can use it up by
\qquad by \qquad by doing anything at all that requires energy. Only a small bit \qquad \%) gets \qquad in the body and is passed up the \qquad .

We call this the \qquad 10% of the energy gets passed from each stage. Let's look at the diagram on the next page:

Progressive Loss of Energy in Food Chain
The plant uses \qquad from the sun to grow and \qquad its own food. It starts with \qquad Joules of energy, but uses up
\qquad of the \qquad before it gets eaten.

The deer eats the \qquad - which had \qquad Joules of energy.

The deer does lots of \qquad and frolicking through the forest, and burns off \qquad of the Joules. It stores \qquad Joule of energy in its
\qquad .

The hungry lion eats up the \qquad - the deer had a total of \qquad
Joule stored up in its body. The lion uses up \qquad of
this energy, and only ends up storing \qquad of a Joule.

So....we started with \qquad Joules of energy in the plant...only
\qquad Joule is left by the time we get to the lion! A lot of energy gets \qquad in the food chain!

